On genus expansion of knot polynomials and hidden structure of Hurwitz tau-functions
نویسندگان
چکیده
In the genus expansion of the HOMFLY polynomials their representation dependence is naturally captured by symmetric group characters. This immediately implies that the Ooguri–Vafa partition function (OVPF) is a Hurwitz tau-function. In the planar limit involving factorizable special polynomials, it is actually a trivial exponential taufunction. In fact, in the double scaling Kashaev limit (the one associated with the volume conjecture) dominant in the genus expansion are terms associated with the symmetric representations and with the integrability preserving Casimir operators, though we stop one step from converting this fact into a clear statement about the OVPF behavior in the vicinity of q = 1. Instead, we explain that the genus expansion provides a hierarchical decomposition of the Hurwitz taufunction, similar to the Takasaki–Takebe expansion of the KP tau-functions. This analogy can be helpful to develop a substitute for the universal Grassmannian description in the Hurwitz tau-functions.
منابع مشابه
gH-differentiable of the 2th-order functions interpolating
Fuzzy Hermite interpolation of 5th degree generalizes Lagrange interpolation by fitting a polynomial to a function f that not only interpolates f at each knot but also interpolates two number of consecutive Generalized Hukuhara derivatives of f at each knot. The provided solution for the 5th degree fuzzy Hermite interpolation problem in this paper is based on cardinal basis functions linear com...
متن کاملOn the isomonodromic tau-function for the Hurwitz spaces of branched coverings of genus zero and one
The isomonodromic tau-function for the Hurwitz spaces of branched coverings of genus zero and one are constructed explicitly. Such spaces may be equipped with the structure of a Frobenius manifold and this introduces a flat coordinate system on the manifold. The isomonodromic taufunction, and in particular the associated G-function, are rewritten in these coordinates and an interpretation in te...
متن کاملIsomonodromic Tau-Function of Hurwitz Frobenius Manifolds and Its Applications
In this work we find the isomonodromic (Jimbo-Miwa) tau-function corresponding to Frobenius manifold structures on Hurwitz spaces. We discuss several applications of this result. First, we get an explicit expression for the G-function (solution of Getzler’s equation) of the Hurwitz Frobenius manifolds. Second, in terms of this tau-function we compute the genus one correction to the free energy ...
متن کاملA fractional type of the Chebyshev polynomials for approximation of solution of linear fractional differential equations
In this paper we introduce a type of fractional-order polynomials based on the classical Chebyshev polynomials of the second kind (FCSs). Also we construct the operational matrix of fractional derivative of order $ gamma $ in the Caputo for FCSs and show that this matrix with the Tau method are utilized to reduce the solution of some fractional-order differential equations.
متن کاملGeometric Studies on Inequalities of Harmonic Functions in a Complex Field Based on ξ-Generalized Hurwitz-Lerch Zeta Function
Authors, define and establish a new subclass of harmonic regular schlicht functions (HSF) in the open unit disc through the use of the extended generalized Noor-type integral operator associated with the ξ-generalized Hurwitz-Lerch Zeta function (GHLZF). Furthermore, some geometric properties of this subclass are also studied.
متن کامل